skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cimarelli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 12, 2026
  2. We use new geochemical, petrological, and rheological data to constrain the formation and emplacement of the highly compositionally unusual(andesitic basalt) Kīlauea 2018 Fissure 17 (F17) eruptive products. Despite the restricted spatial and temporal distribution, F17 samples are texturally and geochemically diverse. The western samples are enriched in SiO2 by up to 10 wt%, relative to their eastern equivalents; additionally, the western samples contain microcrystalline enclaves, absent from the homogenous eastern samples. The compositions erupted along F17 suggest interaction between the basaltic 2018 juvenile magma and a crystal mush at depth, likely a left-over from the nearby 1955 eruption. Magma mingling caused heating and local melting of remnant mush, leading to melt hybridization and volatile exsolution. Rapid water exsolution likely caused overpressurization of the reservoir underneath the western side of F17, leading to Strombolian explosions of viscous magma, in contrast to sustained Hawaiian fountaining on the eastern side. Remelting of remnant crystal mush and melt hybridization in open-conduit systems may hence be an effective mechanism in inducing volatile saturation. 
    more » « less
  3. Abstract Explosive volcanic eruptions produce vast quantities of silicate ash, whose surfaces are subsequently altered during atmospheric transit. These altered surfaces mediate environmental interactions, including atmospheric ice nucleation, and toxic effects in biota. A lack of knowledge of the initial, pre-altered ash surface has required previous studies to assume that the ash surface composition created during magmatic fragmentation is equivalent to the bulk particle assemblage. Here we examine ash particles generated by controlled fragmentation of andesite and find that fragmentation generates ash particles with substantial differences in surface chemistry. We attribute this disparity to observations of nanoscale melt heterogeneities, in which Fe-rich nanophases in the magmatic melt deflect and blunt fractures, thereby focusing fracture propagation within aureoles of single-phase melt formed during diffusion-limited growth of crystals. In this manner, we argue that commonly observed pre-eruptive microtextures caused by disequilibrium crystallisation and/or melt unmixing can modify fracture propagation and generate primary discrepancies in ash surface chemistry, an essential consideration for understanding the cascading consequences of reactive ash surfaces in various environments. 
    more » « less
  4. Explosive volcanic eruptions generate electrical discharges, a phenomenon termed volcanic lightning (VL). VL is increasingly well-investigated and monitored for modern eruptions, however volcanism has been active since Earth’s origin. Thus, investigating VL under different atmospheric conditions is relevant for studies of early atmospheric chemistry and potential prebiotic reactions. We developed an experimental setup to investigate VL in varying atmospheres. We present the first experiments of laboratory discharges in particle-laden jets in varying atmospheric conditions. The new experimental setup is a mobile fragmentation bomb erupting into a gas-tight particle collector tank. This setup enables the testing of different atmospheric conditions, changes in the carrier gas of the jet, changes in the pressure within the tank, monitoring of the jet behaviour, and sampling of the atmosphere together with the decompressed solid materials. We find that the number and magnitude of near-vent electrical discharge events are similar in CO2-CO and air atmospheres. 
    more » « less
  5. Several bat species act as asymptomatic reservoirs for many viruses that are highly pathogenic in other mammals. Here, we have characterized the functional diversification of the protein kinase R (PKR), a major antiviral innate defense system. Our data indicate that PKR has evolved under positive selection and has undergone repeated genomic duplications in bats in contrast to all studied mammals that have a single copy of the gene. Functional testing of the relationship between PKR and poxvirus antagonists revealed how an evolutionary conflict with ancient pathogenic poxviruses has shaped a specific bat host-virus interface. We determined that duplicated PKRs of theMyotisspecies have undergone genetic diversification, allowing them to collectively escape from and enhance the control of DNA and RNA viruses. These findings suggest that viral-driven adaptations in PKR contribute to modern virus-bat interactions and may account for bat-specific immunity. 
    more » « less
  6. Abstract Self‐ignition during the explosive eruption of mud volcanoes can create flames that in some cases reach heights that exceed hundreds of meters. To study the controls on electrical discharge in natural mud, we performed laboratory experiments using a shock‐tube apparatus to simulate explosive eruptions of mud. We vary the water content of the mud and proportions of fine particles. We measure electric discharge within a Faraday cage and we use a high‐speed video camera to image the eruption of mud and some of the electric discharge events. We find that (a) decreasing the proportion of fine particles and (b) increasing water content each suppress the number and magnitude of electric discharge events. Experimentally observed mud volcano lightning occurs where particles exit from the vent and within the jet of erupting particles. 
    more » « less
  7. Abstract Over the last decades, remote observation tools and models have been developed to improve the forecasting of ash‐rich volcanic plumes. One challenge in these forecasts is knowing the properties at the vent, including the mass eruption rate and grain size distribution (GSD). Volcanic lightning is a common feature of explosive eruptions with high mass eruption rates of fine particles. The GSD is expected to play a major role in generating lightning in the gas thrust region via triboelectrification. Here, we experimentally investigate the electrical discharges of volcanic ash as a function of varying GSD. We employ two natural materials, a phonolitic pumice and a tholeiitic basalt (TB), and one synthetic material (soda‐lime glass beads [GB]). For each of the three materials, coarse and fine grain size fractions with known GSDs are mixed, and the particle mixture is subjected to rapid decompression. The experiments are observed using a high‐speed camera to track particle‐gas dispersion dynamics during the experiments. A Faraday cage is used to count the number and measure the magnitude of electrical discharge events. Although quite different in chemical composition, TB and GB show similar vent dynamics and lightning properties. The phonolitic pumice displays significantly different ejection dynamics and a significant reduction in lightning generation. We conclude that particle‐gas coupling during an eruption, which in turn depends on the GSD and bulk density, plays a major role in defining the generation of lightning. The presence of fines, a broad GSD, and dense particles all promote lightning. 
    more » « less
  8. Abstract The origin of electrical activity accompanying volcanic ash plumes is an area of heightened interest in volcanology. However, it is unclear how intense an eruption needs to be to produce lightning flashes as opposed to “vent discharges,” which represent the smallest scale of electrical activity. This study targets 97 carefully monitored plumes <3 km high from Sakurajima volcano in Japan, from June 1 to 7, 2015. We use multiparametric measurements from sensors including a nine‐station lightning mapping array and an infrared camera to characterize plume ascent. Findings demonstrate that the impulsive, high velocity plumes (>55 m/s) were most likely to create vent discharges, whereas lightning flashes occurred in plumes with high volume flux. We identified conditions where volcanic lightning occurred without detectable vent discharges, highlighting their independent source mechanisms. Our results imply that plume dynamics govern the charging for volcanic lightning, while the characteristics of the source explosion control vent discharges. 
    more » « less